Return $\exp(iz)$.



The cis(z) function returns the complex exponential of iz, which is equivalent to exp(iz).

julia> cis(π/2)
6.123233995736766e-17 + 1.0im

Here are some common examples of using cis(z):

  1. Calculate the complex exponential:

    julia> z = 2 + 3im;
    julia> cis(z)
    -0.131202 + 0.991057im

    The cis(z) function returns the complex exponential of z.

  2. Generate points on the unit circle:
    julia> angles = range(0, stop=2π, length=8);
    julia> points = cis.(angles)
    8-element Vector{ComplexF64}:
    1.0 + 0.0im
    0.7071067811865476 + 0.7071067811865475im
    6.123233995736766e-17 + 1.0im
    -0.7071067811865475 + 0.7071067811865476im
    -1.0 + 1.2246467991473532e-16im
    -0.7071067811865477 - 0.7071067811865474im
    -1.8369701987210297e-16 - 1.0im
    0.7071067811865474 - 0.7071067811865477im

    This example generates complex points on the unit circle using cis(z).

Remember, the cis(z) function is equivalent to exp(iz), where z is a complex number.

See Also

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: