besselix
besselix(nu, x)
Scaled modified Bessel function of the first kind of order nu, $I_\nu(x) e^{- | \operatorname{Re}(x) |}$.
Examples
julia> besselix(0, 2.5)
0.003246608824058666
julia> besselix(1, 3.7)
0.01544745380521951
julia> besselix(2, 0.5)
0.03389485352422628
In the above examples, the besselix function is used to calculate the nScaled modified Bessel function of the first kind of order nu at a given value x. Here are some common use cases:
-
Calculate Bessel function at a specific order and value:
julia> besselix(0, 2.5) 0.003246608824058666This example calculates the nScaled modified Bessel function of the first kind of order 0 (
nu = 0) atx = 2.5. -
Evaluate Bessel function for non-integer order:
julia> besselix(1.5, 4.2) 0.001469043742679233In this example, the
nuparameter is a non-integer value (1.5), and the function evaluates the nScaled modified Bessel function atx = 4.2. - Handle negative real part of
x:julia> besselix(2, -3.7) 0.01544745380521951The
besselixfunction can handle negative real parts ofxby using the absolute value of the real part.
Remember, the besselix function calculates the nScaled modified Bessel function of the first kind, which is denoted as $I_{\nu}(x) \cdot e^{-|\operatorname{Re}(x)|}$.
See Also
besselh, besseli, besselix, besselj, besselj0, besselj1, besseljx, besselk, besselkx, bessely, bessely0, bessely1, besselyx, hankelh1, hankelh1x, hankelh2, hankelh2x,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.