ctranspose
ctranspose(A)
The conjugate transposition operator (').
Examples
-
Conjugate transpose of a matrix:
julia> A = [1+2im 3+4im; 5+6im 7+8im]; julia> B = ctranspose(A) 2×2 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},2}}: 1-2im 5-6im 3-4im 7-8imThis example computes the conjugate transpose of matrix
Ausing thectransposefunction and stores it in matrixB. -
Conjugate transpose of a vector:
julia> v = [1+2im, 3+4im, 5+6im]; julia> w = ctranspose(v) 1×3 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},1}}: 1-2im 3-4im 5-6imIt computes the conjugate transpose of the vector
vusingctransposeand assigns the result to vectorw. - Conjugate transpose of a scalar:
julia> x = 1+2im; julia> y = ctranspose(x) 1×1 LinearAlgebra.Adjoint{Complex{Int64},Complex{Int64}}: 1-2imIt calculates the conjugate transpose of the scalar complex number
xand assigns it toy.
Common mistake example:
julia> M = [1 2 3; 4 5 6];
julia> T = ctranspose(M)
ERROR: MethodError: no method matching ctranspose(::Array{Int64,2})
In this example, the ctranspose function is applied to a non-complex matrix M. The ctranspose function is specifically designed for complex numbers and matrices. Make sure to use it with appropriate complex inputs.
See Also
abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.